Skip to main content

Image Classification on Jetson

This section demonstrates image classification on NVIDIA Jetson using Ultralytics YOLO classification models. Examples include image, video, and real-time camera classification.


1. Optimize Jetson Performance

Before running classification, ensure Jetson is operating at maximum performance.

Enable MAX Power Mode

sudo nvpmodel -m 2

Enable Jetson Clocks

sudo jetson_clocks

2. Image Classification (Image Input)

Enter Demo Directory

cd ~/ultralytics/ultralytics/yahboom_demo

Run Image Classification Script

python3 04.classification_image.py

Results are saved to:

~/ultralytics/ultralytics/output/

Sample Code (Image Classification)

from ultralytics import YOLO

model = YOLO("yolo11n-cls.pt")
results = model("assets/dog.jpg")

for r in results:
r.show()
r.save(filename="output/dog_output.jpg")

3. Image Classification (Video Input)

Run Video Classification Script

python3 04.classification_video.py

Output video location:

~/ultralytics/ultralytics/output/

Sample Code (Video Classification)

import cv2
from ultralytics import YOLO

model = YOLO("yolo11n-cls.pt")
cap = cv2.VideoCapture("videos/cup.mp4")

width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))

out = cv2.VideoWriter(
"output/cup_output.mp4",
cv2.VideoWriter_fourcc(*"mp4v"),
fps,
(width, height)
)

while cap.isOpened():
ret, frame = cap.read()
if not ret:
break

results = model(frame)
annotated = results[0].plot()
out.write(annotated)

cap.release()
out.release()

4. Real-Time Image Classification

  • USB Camera: python3 04.classification_usb_cam.py
  • CSI Camera: python3 04.classification_csi_cam.py

5. Notes

  • Classification models output class probabilities
  • Suitable for product recognition and defect classification
  • For localization tasks, use YOLO detection models

Maintained by HemiHex for Jetson-based advanced vision workflows.