Image Classification on Jetson
This section demonstrates image classification on NVIDIA Jetson using Ultralytics YOLO classification models. Examples include image, video, and real-time camera classification.
1. Optimize Jetson Performance
Before running classification, ensure Jetson is operating at maximum performance.
Enable MAX Power Mode
sudo nvpmodel -m 2
Enable Jetson Clocks
sudo jetson_clocks
2. Image Classification (Image Input)
Enter Demo Directory
cd ~/ultralytics/ultralytics/yahboom_demo
Run Image Classification Script
python3 04.classification_image.py
Results are saved to:
~/ultralytics/ultralytics/output/
Sample Code (Image Classification)
from ultralytics import YOLO
model = YOLO("yolo11n-cls.pt")
results = model("assets/dog.jpg")
for r in results:
r.show()
r.save(filename="output/dog_output.jpg")
3. Image Classification (Video Input)
Run Video Classification Script
python3 04.classification_video.py
Output video location:
~/ultralytics/ultralytics/output/
Sample Code (Video Classification)
import cv2
from ultralytics import YOLO
model = YOLO("yolo11n-cls.pt")
cap = cv2.VideoCapture("videos/cup.mp4")
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
out = cv2.VideoWriter(
"output/cup_output.mp4",
cv2.VideoWriter_fourcc(*"mp4v"),
fps,
(width, height)
)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = model(frame)
annotated = results[0].plot()
out.write(annotated)
cap.release()
out.release()
4. Real-Time Image Classification
- USB Camera:
python3 04.classification_usb_cam.py - CSI Camera:
python3 04.classification_csi_cam.py
5. Notes
- Classification models output class probabilities
- Suitable for product recognition and defect classification
- For localization tasks, use YOLO detection models
Maintained by HemiHex for Jetson-based advanced vision workflows.